Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 173: 136-145, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482202

RESUMO

Herbivores gastrointestinal microbiota is of tremendous interest for mining novel lignocellulosic enzymes for bioprocessing. We previously reported a set of potential carbohydrate-active enzymes from the metatranscriptome of the Hu sheep rumen microbiome. In this study, we isolated and heterologously expressed two novel glucanase genes, Cel5A-h38 and Cel5A-h49, finding that both recombinant enzymes showed the optimum temperatures of 50 °C. Substrate-specificity determination revealed that Cel5A-h38 was exclusively active in the presence of mixed-linked glucans, such as barley ß-glucan and Icelandic moss lichenan, whereas Cel5A-h49 (EC 3.2.1.4) exhibited a wider substrate spectrum. Surprisingly, Cel5A-h38 initially released only cellotriose from lichenan and further converted it into an equivalent amount of glucose and cellobiose, suggesting a dual-function as both endo-ß-1,3-1,4-glucanase (EC 3.2.1.73) and exo-cellobiohydrolase (EC 3.2.1.91). Additionally, we performed enzymatic hydrolysis of sheepgrass (Leymus chinensis) and rice (Orysa sativa) straw using Cel5A-h38, revealing liberation of 1.91 ± 0.30 mmol/mL and 2.03 ± 0.09 mmol/mL reducing sugars, respectively, including high concentrations of glucose and cellobiose. These results provided new insights into glucanase activity and lay a foundation for bioconversion of lignocellulosic biomass.


Assuntos
Proteínas de Bactérias/metabolismo , Celobiose/biossíntese , Celulose 1,4-beta-Celobiosidase/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Glucose/biossíntese , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Celulose/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucanos/metabolismo , Hidrólise , Cinética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rúmen/microbiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ovinos/microbiologia , Especificidade por Substrato , Trioses/metabolismo , beta-Glucanas/metabolismo
2.
Appl Biochem Biotechnol ; 192(4): 1284-1297, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725373

RESUMO

ß-1,3-glucanases are the main digestive enzymes of plant and fungal cell wall. Transcriptomic analysis of the fungus-growing termite Macrotermes barneyi revealed a high expression of a predicted ß-1,3(4)-glucanase (Mbbgl) transcript in termite gut. Here, we described the cDNA cloning, heterologous expression, and enzyme characterization of Mbbgl. Sequence analysis and RT-PCR results showed that Mbbgl is a termite-origin GH16 ß-1,3(4)-glucanase. The recombinant enzyme showed the highest activity towards laminarin and was active optimally at 50 °C, pH 5.5. The enzyme displayed endo/exo ß-1,3(4)-glucanase activities. Moreover, Mbbgl had weak transglycosylation activity. The results indicate that Mbbgl is an endogenous digestive ß-1,3(4)-glucanase, which contributes to the decomposition of plant biomass and fungal hyphae. Additionally, the multiple activities, pH, and ion stabilities make Mbbgl a potential candidate for application in the food industry.


Assuntos
Digestão , Endo-1,3(4)-beta-Glucanase/metabolismo , Fungos/crescimento & desenvolvimento , Isópteros/enzimologia , Isópteros/microbiologia , Animais , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/genética , Estabilidade Enzimática , Glicosilação , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Temperatura
3.
Arch Anim Nutr ; 74(4): 309-324, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32441546

RESUMO

The study was conducted to determine effects of a complex of fibre-degrading enzymes (xylanase, cellulase and ß-glucanase) on nutrient digestibility, fibre fermentation and concentrations of short chain fatty acids (SCFA) at different parts of digestive tract in pigs fed different fibre-rich ingredients. A total of 36 barrows fitted with T-cannulas in the distal ileum (initial body weight of 41.1 ± 2.7 kg) were randomly allotted to six dietary treatments with three different high-fibre diets including maize bran (MB), sugar beet pulp (SBP) and soybean hulls (SH) with or without supplementation of fibre-degrading enzymes. Enzyme supplementation improved (p < 0.05) apparent ileal digestibility (AID) of dietary gross energy (GE), crude protein, dry matter (DM), organic matter (OM), total dietary fibre (TDF), neutral detergent fibre (NDF) and apparent total tract digestibility (ATTD) of dietary GE, DM, OM, TDF, insoluble dietary fibre (IDF) when pigs were fed MB, SBP or SH diets. When compared to the SBP and SH diets, the AID of GE, DM, ash, OM and NDF in diet MB was higher (p < 0.05), but the hindgut disappearance and ATTD of nutrients, except for ether extract and crude ash, were lower (p < 0.05). Enzyme supplementation increased acetate and total SCFA concentrations in ileal digesta and faeces of pigs. In conclusion, enzyme addition improved IDF fermentation and SCFA concentration in the whole intestine of pigs, and there was a large variation of digestibility of fibre components among MB, SH and SBP owing to their different fibre composition. Therefore, fibre-degrading enzymes should be applied to fibrous diets to improve efficient production of swine, especially considering low fibre digestibility of fibre-rich ingredients.


Assuntos
Celulase/metabolismo , Digestão , Endo-1,3(4)-beta-Glucanase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Íleo/fisiologia , Nutrientes/fisiologia , Sus scrofa/fisiologia , Ração Animal/análise , Animais , Beta vulgaris/química , Celulase/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Endo-1,3(4)-beta-Glucanase/administração & dosagem , Endo-1,4-beta-Xilanases/administração & dosagem , Fermentação , Trato Gastrointestinal , Íleo/efeitos dos fármacos , Masculino , Distribuição Aleatória , Zea mays/química
4.
Astrobiology ; 20(7): 820-829, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32207981

RESUMO

The plant cell wall provides each cell with structural support and mechanical strength, and thus, it plays an important role in supporting the plant body against the gravitational force. We investigated the effects of microgravity on the composition of cell wall polysaccharides and on the expression levels of genes involved in cell wall metabolism using rice shoots cultivated under artificial 1 g and microgravity conditions on the International Space Station. The bulk amount of the cell wall obtained from microgravity-grown shoots was comparable with that from 1 g-grown shoots. However, the analysis of sugar constituents of matrix polysaccharides showed that microgravity specifically reduced the amount of glucose (Glc)-containing polysaccharides such as 1,3:1,4-ß-glucans, in shoot cell walls. The expression level of a gene for endo-1,3:1,4-ß-glucanase, which hydrolyzes 1,3:1,4-ß-glucans, largely increased under microgravity conditions. However, the expression levels of genes involved in the biosynthesis of 1,3:1,4-ß-glucans were almost the same under both gravity conditions. On the contrary, microgravity scarcely affected the level and the metabolism of arabinoxylans. These results suggest that a microgravity environment promotes the breakdown of 1,3:1,4-ß-glucans, which, in turn, causes the reduced level of these polysaccharides in growing rice shoots. Changes in 1,3:1,4-ß-glucan level may be involved in the modification of mechanical properties of cell walls under microgravity conditions in space.


Assuntos
Parede Celular/química , Oryza/crescimento & desenvolvimento , Ausência de Peso/efeitos adversos , Xilanos/metabolismo , beta-Glucanas/metabolismo , Adaptação Fisiológica/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/enzimologia , Oryza/genética , Brotos de Planta/química , Brotos de Planta/citologia , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Voo Espacial , Xilanos/isolamento & purificação , beta-Glucanas/isolamento & purificação
5.
Biomolecules ; 9(12)2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779176

RESUMO

Trichoderma species are known for their ability to produce lytic enzymes, such as exoglucanases, endoglucanases, chitinases, and proteases, which play important roles in cell wall degradation of phytopathogens. ß-glucanases play crucial roles in the morphogenetic-morphological process during the development and differentiation processes in Trichoderma species, which have ß-glucans as the primary components of their cell walls. Despite the importance of glucanases in the mycoparasitism of Trichoderma spp., only a few functional analysis studies have been conducted on glucanases. In the present study, we used a functional genomics approach to investigate the functional role of the gluc31 gene, which encodes an endo-ß-1,3-glucanase belonging to the GH16 family in Trichoderma harzianum ALL42. We demonstrated that the absence of the gluc31 gene did not affect the in vivo mycoparasitism ability of mutant T. harzianum ALL42; however, gluc31 evidently influenced cell wall organization. Polymer measurements and fluorescence microscopy analyses indicated that the lack of the gluc31 gene induced a compensatory response by increasing the production of chitin and glucan polymers on the cell walls of the mutant hyphae. The mutant strain became more resistant to the fungicide benomyl compared to the parental strain. Furthermore, qRT-PCR analysis showed that the absence of gluc31 in T. harzianum resulted in the differential expression of other glycosyl hydrolases belonging to the GH16 family, because of functional redundancy among the glucanases.


Assuntos
Antibiose/genética , Parede Celular/enzimologia , Parede Celular/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Trichoderma/enzimologia , Trichoderma/metabolismo , Ascomicetos/metabolismo , Benomilo/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Quitina/metabolismo , Endo-1,3(4)-beta-Glucanase/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genômica , Microscopia de Fluorescência , Filogenia , Rhizoctonia/metabolismo , Trichoderma/efeitos dos fármacos , Trichoderma/patogenicidade , beta-Glucanas/metabolismo
6.
Insect Biochem Mol Biol ; 115: 103242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31520716

RESUMO

The European house dust mite, Dermatophagoides pteronyssinus is a major source of airborne allergens worldwide and is found in half of European homes. Interactions between microbes and house dust mites (HDM) are considered important factors that allow them to persist in the home. Laboratory studies indicate the European HDM, D. pteronyssinus is a mycophagous mite, capable of utilising a variety of fungi for nutrients, however specific mycolytic digestive enzymes are unknown. Our previous work identified a number of putative glycosyl hydrolases present in the predicted proteome of D. pteronyssinus airmid and validated the expression of 42 of these. Of note, three GH16 proteins with predicted ß-1,3 glucanase activity were found to be consistently present in the mite body and excretome. Here, we performed an extensive bioinformatic, proteomic and biochemical study to characterize three-novel ß-1,3 glucanases from this medically important house dust mite. The genes encoding novel ß-1,3 glucanases designated Glu1, Glu2 and Glu3 were identified in D. pteronyssinus airmid, each exhibited more than 59% amino acid identity to one another. These enzymes are encoded by Glu genes present in a tri-gene cluster and protein homologs are found in other acari. The patchy phyletic distribution of Glu proteins means their evolutionary history remains elusive, however horizontal gene transfer cannot be completely excluded. Recombinant Glu1 and Glu2 exhibit hydrolytic activity toward laminarin, pachyman and barley glucan. Excreted ß-1,3 glucanase activity was increased in response to D. pteronyssinus airmid feeding on baker's yeast. Active ß-1,3 glucanases are expressed and excreted in the faeces of D. pteronyssinus airmid indicating they are digestive enzymes capable of breaking down ß-1,3 glucans of fungi present in house dust.


Assuntos
Dermatophagoides pteronyssinus/enzimologia , Endo-1,3(4)-beta-Glucanase/metabolismo , Sequência de Aminoácidos , Animais , Dermatophagoides pteronyssinus/genética , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/isolamento & purificação
7.
Protein Expr Purif ; 164: 105481, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31470096

RESUMO

The lamC gene encoding a novel ß-(1,3)-glucanase was cloned from Corallococcus sp. EGB and successfully expressed in the industrial yeast Pichia pastoris. The mature protein without the initial 26 residues of signal peptide, designated LamC27, was found to be composed of fascin-like module and laminarinase-like catalytic module. The purified recombinant enzyme (rLamC27) with a calculated molecular mass of 45.3 kDa displays activities toward a broad range of ß-linked polysaccharides, including laminarin, curdlan, pachyman, lichenan, and CMC. Enzymological characterization showed that rLamC27 performes its optimal activity under the condition of 45 °C and pH 7.0, respectively, and preferentially catalyzes the hydrolysis of glucans with a ß-1,3-linkage, which is similar to the LamC previously expressed in E. coli. TherLamC27 enzyme was activated by Mn2+ and Ba2+, while it was inhibited by Cu2+, Zn2+, and Co2+. Moreover, rLamC27 was strongly inhibited by 10 mM EDTA with 7.5% of its original activity remiaining, and weakly by SDS and Triton X-100. In antifungal assay, rLamC27 was conformed to possess lytic and antifungal activity against rice blast fungus. Specifically, a significant decrease germ tube and appressorium formation ratios from 94% to 59% and 97%-51%, respectively, were observed following exposure to rLamC27. H2DCFDA and CFW staining further demonstrated that the fungistasis capability of rLamC27 could be contributed by its ability to hydrolyze components of the cell wall. All these favorable properties indicate a promising potential for using rLamC27 as a biological antifungal agent in areas such as plant protection and food preservation.


Assuntos
Endo-1,3(4)-beta-Glucanase/metabolismo , Myxococcales/enzimologia , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/farmacologia , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Expressão Gênica , Metais/metabolismo , Myxococcales/genética , Myxococcales/metabolismo , Oryza/microbiologia , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Especificidade por Substrato
8.
Protein Expr Purif ; 162: 18-23, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31112758

RESUMO

Bacterial ß-1,3-1,4-glucanase (BG) is an endoglucanase that hydrolyzes linear ß-glucans containing ß-1,3 and ß-1,4 linkages, such as barley ß-glucans. In this study, a BG gene was transformed into the food-grade plasmid pNZ8149 and successfully expressed in Lactococcus lactis NZ3900 using the nisin-controlled gene expression system. To facilitate extracellular secretion, the signal peptide Usp45 was added during vector construction. A histidine tag was also added for affinity purification. BG was extracellularly secreted and was also present in the cells in soluble form. N-terminal amino acid residue analysis of secreted BG revealed that the Usp45 peptide was removed. The optimum temperature and pH for both intracellular and extracellular BG were 40 °C and 6, respectively. The enzyme kinetic parameters, Vmax, Km, kcat, and kcat/Km, of extracellular BG were 1317.51 µmol min-1, 1.97 mg ml-1, 588.54 s-1, and 298.26 ml s-1∙mg-1, respectively. There was no significant difference in the enzyme kinetic parameters of intracellular and extracellular BG. The growth pattern of transformed L. lactis NZ3900 in ß-glucan-containing liquid medium confirmed ß-glucan degradation by BG. The transformed strain degraded ß-glucans, produced gluco-oligosaccharide, and produced lactic acid. The strain and expression system constructed in this study could be applied to industrial fields requiring BG produced in food-grade lactococcal secretory expression system.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/genética , Endo-1,3(4)-beta-Glucanase/genética , Alimentos Fermentados/microbiologia , Peixes/microbiologia , Expressão Gênica , Lactococcus lactis/genética , Animais , Bacillus/genética , Bacillus/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/metabolismo , Estabilidade Enzimática , Cinética , Lactococcus lactis/metabolismo , beta-Glucanas/metabolismo
9.
J Agric Food Chem ; 67(24): 6828-6836, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31136163

RESUMO

Verticillium wilt, caused by Verticillium dahliae, results in a dramatic loss of cotton yields in China. There is great potential for biocontrol to manage this destructive crop disease. In this study, we obtained the endophytic bacterium Bacillus halotolerans Y6 from Verticillium wilt-resistant cotton Gossypium barbadense Xinhai15; this bacterium possesses strong antagonistic abilities that inhibit V. dahliae spore germination and mycelial growth. The results of the enzyme activity assay, heterologous expression, and gene knockdown showed that the key virulence factor of Y6 for antagonizing V. dahliae was ß -glucanase Bgy6. To facilitate field tests of biological control, we constructed the homologous Bgy6-overexpression strain OY6. Compared with the wild-type Y6 strain, the ß-glucanase activity of OY6 was increased by 91.79%, and the inhibition rate of OY6 against V. dahliae V991 exceeded 96.7%. Moreover, the spores of V. dahliae V991 treated with OY6 showed more mucus and larger holes on the surface, as observed by scanning electron microscopy. Potting test results illustrated that both OY6 and Y6 could improve the resistance of upland cotton to Verticillium wilt. With the inoculation of V. dahliae V991 for 45 days, the disease index of G. hirsutum TM-1 treated with OY6 was only 8.33, which was significantly lower than that in plants treated with the wild-type strain Y6 (17.86) or the controls without bacteria (35.94). Our research provides a new idea for the control of Verticillium wilt in upland cotton via transforming endophytic bacteria of Verticillium wilt-resistant cotton and proposes a new solution to prevent and control Verticillium wilt.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/genética , Endo-1,3(4)-beta-Glucanase/genética , Endófitos/enzimologia , Gossypium/microbiologia , Doenças das Plantas/imunologia , Verticillium/fisiologia , Fatores de Virulência/genética , Antibiose , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/fisiologia , Proteínas de Bactérias/metabolismo , Resistência à Doença , Endo-1,3(4)-beta-Glucanase/metabolismo , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/fisiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/imunologia , Doenças das Plantas/microbiologia , Fatores de Virulência/imunologia
10.
Carbohydr Polym ; 194: 339-349, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29801847

RESUMO

To resolve the structure of laminarin, the recombinant endo-ß-1,3-glucanase from Coprinopsis cinerea, which has specific activity on ß-1,3 glycosidic bond and could hydrolyze the laminarin with complex structure, was used to hydrolyze laminarin. Then, the structures of enzyme-resistant oligosaccharides were quantitatively and qualitatively analysed by high-performance anion exchange chromatography coupled with mass spectrometry. The laminarin from Laminaria digitata contains 9.51% ß-1,6 glycosidic bonds only in the branches (branch degree 7.68%). The laminarin from Eisenia bicyclis contains more ß-1,6 glycosidic bonds: 19.42% ß-1,6 glycosidic bonds in backbone and more and longer ß-1,6 branches (branch degree 25.99%). The differences in the ratio of glycosidic bonds and branch degree influence their bioactivity: the antioxidant activity and the antimicrobial activity against Gram positive bacteria of the laminarin from E. bicyclis is stronger than the laminarin from L. digitata, but the antimicrobial activity on Gram negative bacteria of the laminarin from E. bicyclis is weaker.


Assuntos
Antioxidantes/metabolismo , Agentes de Controle Biológico/química , Agentes de Controle Biológico/metabolismo , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/metabolismo , Glucanos/metabolismo , Agaricales/enzimologia , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Glucanos/química , Espectrometria de Massas em Tandem
11.
J Basic Microbiol ; 58(5): 440-447, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29266292

RESUMO

Melanization of carbon stressed Aspergillus nidulans cultures were studied. Melanin production showed strong positive correlation with the activity of the secreted chitinase and ß-1,3-glucanase. Deletion of either chiB encoding an autolytic endochitinase or engA encoding an autolytic ß-1,3-endoglucanase, or both, almost completely prevented melanization of carbon stressed cultures. In contrast, addition of Trichoderma lyticase to cultures induced melanin production. Synthetic melanin could efficiently inhibit the purified ChiB chitinase activity. It could also efficiently decrease the intensity of hyphal fragmentation and pellet disorganization in Trichoderma lyticase treated cultures. Glyphosate, an inhibitor of L-3,4-dihydroxyphenylalanine-type melanin synthesis, could prevent melanization of carbon-starved cultures and enhanced pellet disorganization, while pyroquilon, a 1,8-dihydroxynaphthalene-type melanin synthesis inhibitor, enhanced melanization, and prevented pellet disorganization. We concluded that cell wall stress induced by autolytic cell wall hydrolases was responsible for melanization of carbon-starved cultures. The produced melanin can shield the living cells but may not inhibit the degradation and reutilization of cell wall materials of dead hyphae. Controlling the activity of autolytic hydrolase production can be an efficient approach to prevent unwanted melanization in the fermentation industry, while applying melanin synthesis inhibitors can decrease the resistance of pathogenic fungi against the chitinases produced by the host organism.


Assuntos
Aspergillus nidulans/enzimologia , Aspergillus nidulans/metabolismo , Autólise , Carbono/metabolismo , Melaninas/biossíntese , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/genética , Parede Celular/efeitos dos fármacos , Celulases/genética , Celulases/metabolismo , Quitinases/genética , Quitinases/metabolismo , Di-Hidroxifenilalanina/antagonistas & inibidores , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Fermentação , Proteínas Fúngicas/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase , Glicina/análogos & derivados , Glicina/antagonistas & inibidores , Hifas/metabolismo , Complexos Multienzimáticos , Peptídeo Hidrolases , Pirróis/antagonistas & inibidores , Quinolinas/antagonistas & inibidores , Trichoderma/enzimologia , Trichoderma/metabolismo
12.
Plant Physiol ; 173(3): 1920-1932, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28126846

RESUMO

The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests on rice (Oryza sativa) in Asia. After landing on plants, BPH rapidly accesses plant phloem and sucks the phloem sap through unknown mechanisms. We discovered a salivary endo-ß-1,4-glucanase (NlEG1) that has endoglucanase activity with a maximal activity at pH 6 at 37°C and is secreted into rice plants by BPH NlEG1 is highly expressed in the salivary glands and midgut. Silencing NlEG1 decreases the capacity of BPH to reach the phloem and reduces its food intake, mass, survival, and fecundity on rice plants. By contrast, NlEG1 silencing had only a small effect on the survival rate of BPH raised on artificial diet. Moreover, NlEG1 secreted by BPH did not elicit the production of the defense-related signal molecules salicylic acid, jasmonic acid, and jasmonoyl-isoleucine in rice, although wounding plus the application of the recombination protein NlEG1 did slightly enhance the levels of jasmonic acid and jasmonoyl-isoleucine in plants compared with the corresponding controls. These data suggest that NlEG1 enables the BPH's stylet to reach the phloem by degrading celluloses in plant cell walls, thereby functioning as an effector that overcomes the plant cell wall defense in rice.


Assuntos
Endo-1,3(4)-beta-Glucanase/metabolismo , Comportamento Alimentar/fisiologia , Hemípteros/fisiologia , Proteínas de Insetos/metabolismo , Oryza/parasitologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Parede Celular/metabolismo , Celulose/metabolismo , Ciclopentanos/metabolismo , Endo-1,3(4)-beta-Glucanase/classificação , Endo-1,3(4)-beta-Glucanase/genética , Fertilidade/genética , Regulação Enzimológica da Expressão Gênica , Hemípteros/enzimologia , Hemípteros/genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Oxilipinas/metabolismo , Floema/parasitologia , Filogenia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saliva/enzimologia , Homologia de Sequência de Aminoácidos
13.
Fungal Biol ; 121(1): 61-68, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007217

RESUMO

A gene coding endo-ß-1,3(4)-glucanase (ENG16A) was cloned from Coprinopsis cinerea and heterologously expressed in Pichia pastoris. ENG16A only acts on substrates containing ß-1,3 glycosidic bonds but not on substrates containing only ß-1,4- or ß-1,6-glycosidic bonds. Interestingly, compared to the activity of this enzyme towards carboxymethyl (CM)-pachyman containing only ß-1,3-glycosidic bonds, its activity towards barley ß-glucan containing both ß-1,3-glycosidic and ß-1,4-glycosidic bonds was increased by 64.72 %,, its activity towards laminarin containing both ß-1,3-glycosidic and ß-1,6-glycosidic bonds was decreased by 50.83 %. In addition, ENG16A has a higher Km value and Vmax for barley ß-glucan than laminarin, which may be related to the fact that barley ß-glucan contains mainly ß-1,4-glycosidic bonds mixed with a few ß-1,3-glycosidic bonds, whereas laminarin mainly contains ß-1,3-glycosidic bonds with a few ß-1,6-branched glucose residues. The adjacent ß-1,4-glycosidic bond promotes ENG16A to hydrolyse ß-1,3-glycosidic bonds, leading to an increased Vmax; the nearby ß-1,6-glycosidic bonds inhibited its hydrolysis of ß-1,3-glycosidic bonds, resulting in a decreased Vmax. This property is suggested to be related to the mechanism that C. cinerea uses to degrade and utilize hemicellulose in straw medium and to protect its cell wall during the mycelium growth stage.


Assuntos
Agaricales/enzimologia , Endo-1,3(4)-beta-Glucanase/metabolismo , Agaricales/genética , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/genética , Expressão Gênica , Pichia/genética , Pichia/metabolismo , Especificidade por Substrato
14.
Protein Expr Purif ; 138: 63-68, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26611612

RESUMO

A novel endo-ß-1,3(4)-glucanase gene, cel16A, was cloned from the fungus Humicola insolens Y1. The 988-bp full-length gene encoded a 286-residue polypeptide consisting of a putative signal peptide of 20 residues and a catalytic domain belonging to glycosyl hydrolase family 16. It was successfully overexpressed in Pichia pastoris GS115. The purified recombinant Cel16A exhibited highest specific activity toward barley ß-glucan, followed by lichenan and laminarin, but not toward CMC-Na, birchwood xylan, Avicel and filter paper, indicating that Cel16A is an endo-ß-1,3(4)-glucanases. Recombinant Cel16A had a pH optimum at 5.5 and a temperature optimum at 55 °C with a specific activity of 693 U/mg toward barley ß-glucan. It exhibited good stability over pH 5.0-9.0 and at temperatures up to 50 °C, retaining over 80% maximum activity. The Km and Vmax values of Cel16A for barley ß-glucan were 0.91 mg ml-1 and 1530 µmol min-1·mg-1, respectively. All these favorable enzymatic properties of Cel16A make it a good candidate for applications in various industries.


Assuntos
Endo-1,3(4)-beta-Glucanase/metabolismo , Proteínas Fúngicas/metabolismo , Pichia/genética , Proteínas Recombinantes/metabolismo , Sordariales/química , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cromatografia de Afinidade , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/isolamento & purificação , Ensaios Enzimáticos , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucanos/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Pichia/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Sordariales/enzimologia , Especificidade por Substrato
15.
Carbohydr Res ; 435: 162-172, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27810709

RESUMO

We report herein the development of a novel assay procedure for the measurement of ß-glucanase and lichenase (EC 3.2.1.73) in crude enzyme extracts. Two assay formats based on a) a direct cleavage or b) an enzyme coupled substrate were initially investigated. The 'direct cleavage' substrate, namely 4,6-O-benzylidene-2-chloro-4-nitrophenyl-ß-31-cellotriosyl-ß-glucopyranoside (MBG4), was found to be the more generally applicable reagent. This substrate was fully characterised using a crude malt ß-glucanase extract, a bacterial lichenase (Bacillus sp.) and a non-specific endo-1,3(4)-ß-glucanase from Clostridium thermocellum (EC 3.2.1.6). Standard curves were derived that allow the assay absorbance response to be directly converted to ß-glucanase/lichenase activity on barley ß-glucan. The specificity of MBG4 was confirmed by analysing the action of competing glycosyl hydrolases that are typically found in malt on the substrate. Manual and automated assay formats were developed for the analysis of a) ß-glucanase in malt flour and b) lichenase enzyme extracts and the repeatability of these assays was fully investigated.


Assuntos
Endo-1,3(4)-beta-Glucanase/metabolismo , Glicosídeo Hidrolases/metabolismo , beta-Glucanas/análise , Automação Laboratorial , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Clostridium thermocellum/enzimologia , Hordeum/enzimologia , Especificidade por Substrato
16.
J Basic Microbiol ; 56(5): 469-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888054

RESUMO

A total of 123 actinomycetes was isolated from 12 varieties of wild orchids and screened for potential antagonistic activity against Phytophthora, which causes black rot disease in orchids. In vitro and in vivo experimental results revealed that Streptomyces sp. strain 9X166 showed the highest antagonistic activity; its ß-1,3-glucanase production ability was a key mechanism for growth inhibition of the pathogen. PCR amplification and DNA sequencing of the 16S ribosomal RNA gene allowed the identification of this strain, with high similarity (99.93%) to the novel species Streptomyces similaensis. The glucanase enzyme, purified to homogeneity by anion exchange and gel filtration chromatography, showed a specific activity of 58 U mg(-1) (a 3.9-fold increase) and yield of 6.4%. The molecular weight, as determined by SDS-PAGE and gel filtration, was approximately 99 and 80 kDa, respectively, suggesting that the enzyme was a monomer. The purified enzyme showed the highest substrate specificity to laminarin, indicating that it was ß-1,3-glucanase. The hydrolyzed products of cello-oligosaccharides suggested that this enzyme was endo-type ß-1,3-glucanase. Streptomyces sp. 9X166 culture filtrate, possessing ß-1,3-glucanase activity, could degrade both freeze-dried and living mycelium. This is the first report on a ß-1,3-glucanase-producing Streptomyces sp. that could be an effective biocontrol agent for black rot disease in orchids.


Assuntos
Agentes de Controle Biológico/metabolismo , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Glucanos/metabolismo , Orchidaceae/parasitologia , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Streptomyces/enzimologia , Eletroforese em Gel de Poliacrilamida , Oligossacarídeos/metabolismo , RNA Ribossômico 16S/genética , Streptomyces/metabolismo , Especificidade por Substrato
17.
Appl Microbiol Biotechnol ; 100(11): 4923-34, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26837217

RESUMO

ß-1,3-Glucans, important structural components of cell wall or nutritional components of the endosperm, are extensively found in bacteria, fungi, yeast, algae, and plants. The structural complexity of ß-1,3-glucans implies that the enzymatic depolymerization of polysaccharides needs combined activities of distinct enzymes. In this study, Lam16A-GH, the catalytic module of a putative glycoside hydrolase (GH) family 16 laminarinase/lichenase from thermophilic bacterium Caldicellulosiruptor sp. F32, was purified and characterized through heterologous expression in Escherichia coli. Lam16A-GH can hydrolyze both ß-1,3-glucan (laminarin) and ß-1,3-1,4-glucan (barley ß-glucan) revealed by analysis of the products of polysaccharide degradation using thin-layer chromatography (TLC). The time required for the loss of 50 % of its activity is 45 h under the optimal condition of 75 °C and pH 6.5. Oligosaccharides degradation assay indicated that Lam16A-GH can catalyze endo-hydrolysis of the ß-1,4 glycosidic linkage adjacent to a 3-O-substituted glucosyl residue in the mixed linked ß-glucans, as well as the ß-1,3 linkage. The survival rate of Saccharomyces cerevisiae cells depends on the addition of Lam16A-GH, and the cytoplasm protein was released from the apparently deconstructed yeast cells. These results indicate that the bi-functional thermostable Lam16A-GH exhibits unique enzymatic properties and potential for yeast lysis.


Assuntos
Proteínas de Bactérias/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Saccharomyces cerevisiae/citologia , Thermoanaerobacterium/enzimologia , Proteínas de Bactérias/genética , Parede Celular/química , Cromatografia em Camada Delgada , Clonagem Molecular , Endo-1,3(4)-beta-Glucanase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glucanos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Oligossacarídeos/química , Especificidade por Substrato , Temperatura , Thermoanaerobacterium/genética , Regulação para Cima , beta-Glucanas/química
18.
J Sci Food Agric ; 96(9): 3088-97, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26439109

RESUMO

BACKGROUND: In China, abalone (Haliotis discus hannai) production is growing annually. During industrial processing, the viscera, which are abundant of cellulase, are usually discarded or processed into low-value feedstuff. Thus, it is of interest to obtain cellulase from abalone viscera and investigate its application for preparation of functional oligosaccharides. RESULTS: A cellulase was purified from the hepatopancreas of abalone by ammonium sulfate precipitation and two-steps column chromatography. The molecular weight of the cellulase was 45 kDa on SDS-PAGE. Peptide mass fingerprinting analysis yielded 103 amino acid residues, which were identical to cellulases from other species of abalone. Substrate specificity analysis indicated that the cellulase is an endo-1,4-ß-glucanase. Hydrolysis of seaweed Porphyra haitanensis polysaccharides by the enzyme produced oligosaccharides with degree of polymerisation of two to four, whose monosaccharide composition was 58% galactose, 4% glucose and 38% xylose. The oligosaccharides revealed 2,2'-diphenyl-1-picrylhydrazyl free radical as well as hydrogen peroxide scavenging activity. CONCLUSION: It is feasible and meaningful to utilise cellulase from the viscera of abalone for preparation of functional oligosaccharides. © 2015 Society of Chemical Industry.


Assuntos
Antioxidantes/isolamento & purificação , Endo-1,3(4)-beta-Glucanase/isolamento & purificação , Gastrópodes/enzimologia , Oligossacarídeos/isolamento & purificação , Porphyra/química , Alga Marinha/química , Vísceras/enzimologia , Sequência de Aminoácidos , Animais , Antioxidantes/química , Antioxidantes/economia , Antioxidantes/metabolismo , Aquicultura/economia , Sequência de Carboidratos , China , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/economia , Endo-1,3(4)-beta-Glucanase/metabolismo , Estabilidade Enzimática , Estudos de Viabilidade , Conservantes de Alimentos/química , Conservantes de Alimentos/economia , Conservantes de Alimentos/isolamento & purificação , Conservantes de Alimentos/metabolismo , Hepatopâncreas/enzimologia , Concentração de Íons de Hidrogênio , Hidrólise , Resíduos Industriais/análise , Resíduos Industriais/economia , Peso Molecular , Oligossacarídeos/química , Oligossacarídeos/economia , Oligossacarídeos/metabolismo , Especificidade por Substrato , Temperatura
19.
J Biol Chem ; 291(3): 1175-97, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26507654

RESUMO

The recent classification of glycoside hydrolase family 5 (GH5) members into subfamilies enhances the prediction of substrate specificity by phylogenetic analysis. However, the small number of well characterized members is a current limitation to understanding the molecular basis of the diverse specificity observed across individual GH5 subfamilies. GH5 subfamily 4 (GH5_4) is one of the largest, with known activities comprising (carboxymethyl)cellulases, mixed-linkage endo-glucanases, and endo-xyloglucanases. Through detailed structure-function analysis, we have revisited the characterization of a classic GH5_4 carboxymethylcellulase, PbGH5A (also known as Orf4, carboxymethylcellulase, and Cel5A), from the symbiotic rumen Bacteroidetes Prevotella bryantii B14. We demonstrate that carboxymethylcellulose and phosphoric acid-swollen cellulose are in fact relatively poor substrates for PbGH5A, which instead exhibits clear primary specificity for the plant storage and cell wall polysaccharide, mixed-linkage ß-glucan. Significant activity toward the plant cell wall polysaccharide xyloglucan was also observed. Determination of PbGH5A crystal structures in the apo-form and in complex with (xylo)glucan oligosaccharides and an active-site affinity label, together with detailed kinetic analysis using a variety of well defined oligosaccharide substrates, revealed the structural determinants of polysaccharide substrate specificity. In particular, this analysis highlighted the PbGH5A active-site motifs that engender predominant mixed-linkage endo-glucanase activity vis à vis predominant endo-xyloglucanases in GH5_4. However the detailed phylogenetic analysis of GH5_4 members did not delineate particular clades of enzymes sharing these sequence motifs; the phylogeny was instead dominated by bacterial taxonomy. Nonetheless, our results provide key enzyme functional and structural reference data for future bioinformatics analyses of (meta)genomes to elucidate the biology of complex gut ecosystems.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Endo-1,3(4)-beta-Glucanase/metabolismo , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Prevotella/enzimologia , Substituição de Aminoácidos , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Celulase/antagonistas & inibidores , Celulase/química , Celulase/genética , Celulose/química , Celulose/metabolismo , Endo-1,3(4)-beta-Glucanase/antagonistas & inibidores , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glucanos/química , Glucanos/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Mutação , Filogenia , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xilanos/química , Xilanos/metabolismo
20.
J Basic Microbiol ; 55(7): 869-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25808979

RESUMO

In order to improve some characteristics of a ß-1,3-1,4-glucanase from Bacillus subtilis MA139, directed evolution was conducted in this study. After error-prone PCR, the ß-1,3-1,4-glucanase gene, glu-opt, was cloned into the vector pBGP1 and transformed into Pichia pastoris X-33 to construct a mutant library. Three variants named as 7-32, 7-87, and 7-115 were screened from 8000 colonies. Amino-acid sequence analysis showed that these mutants had one or two amino-acid substitutions (7-32: T113S, 7-87: M44V/N53H, and 7-115: N157D). The variants were over-expressed in P. pastoris by methanol induction. After purification of the enzyme proteins, the characteristics of the variants were analyzed in detail. It indicated that these mutant enzymes had broader ranges of pH value and better pH stability than the wild-type enzyme. The mutant enzyme 7-87 had the best ability to tolerate an acid environment (pH 2.0), while the wild-type enzyme had no activity under this condition. Moreover, all these mutants demonstrated improved thermal stability. In particular, the mutant enzyme 7-32 had residual enzymatic activity of 60% and 40% after being incubated at 80 °C and 90 °C for 10 min. While, the wild-type enzyme had no residual enzymatic activity after being incubated at 80 °C for 4 min. In addition, the mutant enzymes had better tolerance to some chemicals than the wild-type enzyme. The improved stability could enhance the prospects for this enzyme to have use in the feed industry to reduce the effects of the anti-nutritional factor ß-glucan.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Evolução Molecular Direcionada , Endo-1,3(4)-beta-Glucanase/genética , Endo-1,3(4)-beta-Glucanase/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Mutação , Pichia/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...